Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform.
نویسندگان
چکیده
We demonstrate monolithic integration of a wavelength division multiplexed light source for silicon photonics by a cascade of erbium-doped aluminum oxide (Al2O3:Er3+) distributed feedback (DFB) lasers. Four DFB lasers with uniformly spaced emission wavelengths are cascaded in a series to simultaneously operate with no additional tuning required. A total output power of -10.9 dBm is obtained from the four DFBs with an average side mode suppression ratio of 38.1±2.5 dB. We characterize the temperature-dependent wavelength shift of the cascaded DFBs and observe a uniform dλ/dT of 0.02 nm/°C across all four lasers.
منابع مشابه
Broadband 2-µm emission on silicon chips: monolithically integrated Holmium lasers.
Laser sources in the mid-infrared are of great interest due to their wide applications in detection, sensing, communication and medicine. Silicon photonics is a promising technology which enables these laser devices to be fabricated in a standard CMOS foundry, with the advantages of reliability, compactness, low cost and large-scale production. In this paper, we demonstrate a holmium-doped dist...
متن کاملHigh-performance silicon photonics technology for telecommunications applications
By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge-based modulators/detectors and silica-based high-performance wavelength filter...
متن کاملMonolithic Integration of WDM Light Source for Silicon Photonics by Cascade of Al2O3: Er3+ DFB Lasers
We demonstrate a monolithic integration of WDM light source for silicon photonics by cascade of Al2O3: Er3+ DFB lasers. Simultaneous operation of four channels is achieved with dl/dT = 15.3±0.1 pm/oC temperature dependent wavelength shift. OCIS codes: (130.0130) Integratsed optics; (130.3120) Integrated optics devices; (140.3460) Lasers.
متن کاملIII−V Compound Semiconductor Nanopillars Monolithically Integrated to Silicon Photonics
We propose a platform based on III−V compound semiconductor nanopillars monolithically integrated with silicon photonics. Nanopillars were grown in a process free of metal catalysts onto silicon at low temperature, and a bottom-up process was applied to define the photonic integrated circuit. Stimulated and spontaneous emissions from the nanopillars are direct coupled to silicon waveguides.
متن کاملOptical receiver techniques for integrated photonic links
Integrated photonics has emerged as an I/O technology set to disrupt the communication fabric of many-core computer systems. The optical technology uses wavelength-division-multiplexing and a high degree of integration in order to surpass electrical I/O in both throughput and energy by more than an order of magnitude. However, integrated photonic systems need to be properly designed in order to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 42 9 شماره
صفحات -
تاریخ انتشار 2017